Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

William Clegg,* Hervé J. C. Debovest and Mark R. J. Elsegood‡

School of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England

Present address: Evotec OAI, 111 Milton Park, Abingdon, Oxfordshire OX14 4SD, England
Present address: Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England

Correspondence e-mail: w.clegg@ncl.ac.uk

Key indicators

Single-crystal X-ray study T = 160 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.030 wR factor = 0.075 Data-to-parameter ratio = 11.2

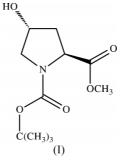
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

conformation. The N atom has planar coordination and is conjugated with the attached ester group. The methyl ester substituent is pseudo-equatorial, while the hydroxy group is

Comment

The title compound, (I), also known as (4R)-*N*-(*tert*-butoxycarbonyl)-4-hydroxy-L-proline methyl ester, is a protected derivative of *trans*-4-hydroxy-L-proline and has been prepared as an intermediate in the synthesis of unnatural amino acids (Schumacher *et al.*, 1998; Deboves & Jackson, 1999). Although the compound has usually been reported as an oil (*e.g.* Abraham *et al.*, 1983; Jordis *et al.*, 1989; Kurokawa & Ohfune, 1993), and has been obtained in this form in many of our own experiments, it has also been prepared in crystalline form by others (Schumacher *et al.*, 1998) as well as ourselves. However, the crystal structure has not previously been determined and so we present it here.

1-tert-Butyl 2-methyl 4-(R)-hydroxy-

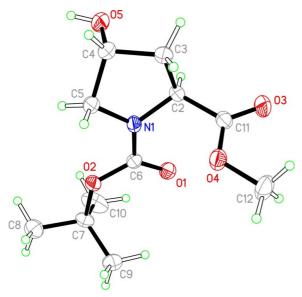

The title compound, $C_{11}H_{19}NO_5$, is a protected derivative of

trans-4-hydroxy-L-proline. The pyrrolidine ring has a twisted

pseudo-axial and acts as a hydrogen-bond donor to a carbonyl

O atom in an adjacent molecule, forming molecular chains.

pyrrolidine-1,2-(2S)-dicarboxylate



The molecular structure of (I) is shown in Fig. 1 and the packing in Fig. 2. Bond lengths and angles are normal. The five-membered pyrrolidine ring has a twisted conformation, atoms C3 and C4 lying above and below the plane of the other three atoms. The bulky ester groups are pseudo-equatorial, and the 4-hydroxy group is pseudo-axial. A similar ring conformation has been found in the parent 4-hydroxyproline molecule, both in its enantiomerically pure form (Koetzle *et al.*, 1973) and in its racemic dihydrate (Shamala *et al.*, 1976). In contrast, the compound in which a 4-phenyl group replaces H in (I) has an envelope conformation, atom C4 being the flap (Tamaki *et al.*, 2001); this is presumably a consequence of the bulky extra substituent.

The torsion angles in Table 1 show that the N atom has planar coordination geometry and this is essentially coplanar Received 13 November 2003 Accepted 17 November 2003 Online 22 November 2003

Printed in Great Britain - all rights reserved

© 2003 International Union of Crystallography

Figure 1

The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

with the attached ester group, as a result of conjugation. The effect of the conjugation can also be seen in the lengthening of the C6=O1 bond compared with C11=O3, whereas the single bonds C6-O2 and C11-O4 have insignificantly different lengths.

The molecule of (I) has only one classical hydrogen-bond donor, the hydroxy group. This donates to the carbonyl atom O1 of the N-bound ester group in an adjacent molecule (Table 2), forming chains along the c axis, each molecule being related to its neighbours in the chain by a screw-axis operation (Fig. 2). The hydrogen-bond formation presumably also contributes to the lengthening of C6=O1 relative to C11=O3.

Experimental

The title compound was prepared by the method of Schumacher et al. (1998), and was recrystallized by vapour diffusion of petroleum ether into a solution in toluene.

Crystal data

$C_{11}H_{19}NO_5$ $M_r = 245.27$	Mo $K\alpha$ radiation Cell parameters from 49
Orthorhombic, $P2_12_12_1$ a = 9.1813 (10) Å b = 10.7862 (12) Å c = 12.7242 (14) Å	reflections $\theta = 2.7-28.9^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 160 (2) K
$V = 1260.1 (2) Å^3$ Z = 4 $D_x = 1.293 \text{ Mg m}^{-3}$	Plate, colourless $0.53 \times 0.24 \times 0.09 \text{ mm}$
Data collection	
Bruker SMART 1K CCD area- detector diffractometer	1486 reflections with $I > R_{int} = 0.028$

detector diffractometer
Thin-slice ω scans
Absorption correction: none
7889 measured reflections
1786 independent reflections

with $I > 2\sigma(I)$: 28.9 $-11 \rightarrow 12$ $k = -10 \rightarrow 14$ $l = -16 \rightarrow 16$

from 4967

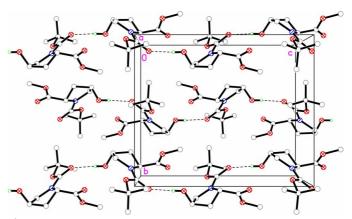


Figure 2

The packing in (I), viewed down the a axis, showing hydrogen-bonded chains of molecules. H atoms have been omitted, except for the O-H group involved in hydrogen bonding.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0493P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.075$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.01	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
1786 reflections	$\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$
160 parameters	Extinction correction: SHELXTL
H-atom parameters constrained	(Sheldrick, 2001)
	Extinction coefficient: 0.021 (3)

Table 1

Selected geometric parameters (Å, °).

N1-C2	1.463 (2)	C6-O2	1.3397 (19)
N1-C5	1.4738 (19)	C11-O3	1.198 (2)
N1-C6	1.341 (2)	C11-O4	1.333 (2)
C6-O1	1.2267 (19)		
C2-N1-C5	112.86 (12)	O1-C6-O2	126.14 (15)
C2-N1-C6	120.30 (13)	C2-C11-O3	123.01 (16)
C5-N1-C6	126.54 (13)	C2-C11-O4	112.39 (14)
N1-C6-O1	122.88 (14)	O3-C11-O4	124.47 (15)
N1-C6-O2	110.98 (13)		
C5-N1-C2-C3	10.55 (17)	C5-N1-C6-O1	174.16 (15)
C5-N1-C2-C11	130.59 (14)	C5-N1-C6-O2	-5.9(2)
C6-N1-C2-C3	-175.32(14)	N1-C6-O2-C7	175.30 (13)
C6-N1-C2-C11	-55.3(2)	O1-C6-O2-C7	-4.8(2)
N1 - C2 - C3 - C4 - 31.25(15)		C6-O2-C7-C8	-172.30(14)
C11 - C2 - C3 - C4 - 154.08(14)		C6-O2-C7-C9	70.46 (18)
C2-C3-C4-C5 40.51 (16)		C6-O2-C7-C10	-54.8(2)
C2-C3-C4-O5	-77.48(15)	N1-C2-C11-O3	151.76 (17)
C2-N1-C5-C4	14.25 (18)	N1-C2-C11-O4	-32.2(2)
C6-N1-C5-C4	-159.43 (15)	C3-C2-C11-O3	-92.81 (19)
C3-C4-C5-N1	-33.36(16)	C3-C2-C11-O4	83.22 (17)
O5-C4-C5-N1	80.92 (16)	C2-C11-O4-C12	-177.28 (15)
C2-N1-C6-O1	0.9 (2)	O3-C11-O4-C12	-1.3(2)
C2-N1-C6-O2	-179.20 (13)		

Table 2

Hydrogen-bonding geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$\overline{O5-H5\cdots O1^{i}}$	0.84	1.95	2.7831 (16)	171

Symmetry code: (i) $\frac{3}{2} - x$, 1 - y, $\frac{1}{2} + z$.

H atoms were positioned geometrically and refined with a riding model (including free rotation about C–C and C–O bonds), with C–H = 0.98–1.00 and O–H = 0.84 Å, and with $U_{\rm iso}$ constrained to be 1.2 (1.5 for methyl groups) times $U_{\rm eq}$ of the carrier atom. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned on the basis of that known for the starting material, a derivative of L-proline.

Data collection: *SMART* (Bruker, 2001); cell refinement: local programs; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

The authors thank the EPSRC for financial support, and Professor Richard Jackson for helpful discussions.

References

- Abraham, D. J., Mokotoff, M., Sheh, L. & Simmons, J. E. (1983). J. Med. Chem. 26, 549–554.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deboves, H. J. C. & Jackson, R. F. W. (1999). Unpublished results.
- Jordis, U., Sauter, F. & Siddiqi, S. M. (1989). Indian J. Chem. Sect. B, 28, 294– 296.
- Koetzle, T. F., Lehmann, M. S. & Hamilton, W. C. (1973). *Acta Cryst.* B**29**, 231–236.
- Kurokawa, N. & Ohfune, Y. (1993). Tetrahedron, 49, 6195-6222.
- Schumacher, K. K., Jiang, J. & Joullié, M. M. (1998). Tetrahedron Asymm. 9, 47–53.
- Shamala, N., Row, T. N. G. & Venkatesan, K. (1976). Acta Cryst. B32, 3267– 3270.
- Sheldrick, G. M. (2001). *SHELXTL*. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
- Tamaki, M., Han, G. & Hruby, V. J. (2001). J. Org. Chem. 66, 3593-3596.